

 Navigation

 	
 index

 	EventFlow stable documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/eventflow/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/eventflow/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	EventFlow stable documentation

Index

 Copyright .
 Created using Sphinx 1.3.1.

 Documentation/DoesAndDonts.html

 Navigation

 		
 index

 		EventFlow stable documentation »

Does and Don’ts

Whenever creating an application that uses CQRS+ES there are several things
you need to keep in mind to make it easier and minimize the potential bugs.
This guide will give you some details on typical problems and how EventFlow
can help you minimize the risk.

Events

Produce clean JSON

Make sure that when your aggregate events are JSON serialized, they produce
clean JSON as it makes it easier to work with and enable you to easier
deserialize the events in the future.

		No type information

		No hints of value objects (see value objects)

Here’s an example of good clean event JSON produced from a create user event.

{
 "Username": "root",
 "PasswordHash": "1234567890ABCDEF",
 "EMail": "root@example.org",
}

Keep old event types

Keep in mind, that you need to keep the event types in your code for as long as
these events are in the event source, which in most cases are forever as
storage is cheap and information, i.e., your domain events, is expensive.

However, you should still clear your code, have a look at how you can
upgrade and version your events for details on how
EventFlow supports you in this.

 © Copyright .
 Created using Sphinx 1.3.1.

Documentation/EventUpgrade.html

 Navigation

 		
 index

 		EventFlow stable documentation »

Event upgrade

At some point you might find the need to replace a event with zero or more
events. Some use cases might be

		A previous application version introduced a domain error in the form of a
wrong event being emitted from the aggregate

		Domain has changed, either from a change in requirements or simply from a
better understanding of the domain

EventFlow event upgraders are invoked whenever the event stream is loaded from
the event store. Each event upgrader receives the entire event stream one event
at a time.

A new instance of a event upgrader is created each time an aggregate is loaded.
This enables you to store information from previous events on the upgrader
instance to be used later, e.g. to determine an action to take on a event
or provide additional information for a new event.

Note that the ordering of event upgraders is important as you might implement
two upgraders, one upgrade a event from V1 to V2 and then another upgrading V2
to V3. EventFlow orders the event upgraders by name before starting the event
upgrade.

Be careful if working with event upgraders that return zero or more than one
event, as this have an influence on the aggregate version and you need to make
sure that the aggregate sequence number on upgraded events have a valid value.

Example - removing a damaged event

To remove an event, simply check and only return the event if its no the event
you want to remove.

public class DamagedEventRemover : IEventUpgrader<MyAggregate, MyId>
{
 public IEnumerable<IDomainEvent<TestAggregate, TestId>> Upgrade(
 IDomainEvent<TestAggregate, TestId> domainEvent)
 {
 var damagedEvent = domainEvent as IDomainEvent<MyAggregate, MyId, DamagedEvent>;
 if (damagedEvent == null)
 {
 yield return domainEvent;
 }
 }
}

Example - replace event

To one event to another, you should use the IDomainEventFactory.Upgrade to
help migrate meta data and create the new event.

public class UpgradeMyEventV1ToMyEventV2 : IEventUpgrader<MyAggregate, MyId>
{
 private readonly IDomainEventFactory _domainEventFactory;

 public UpgradeTestEventV1ToTestEventV2(IDomainEventFactory domainEventFactory)
 {
 _domainEventFactory = domainEventFactory;
 }

 public IEnumerable<IDomainEvent<TestAggregate, TestId>> Upgrade(
 IDomainEvent<TestAggregate, TestId> domainEvent)
 {
 var myEventV1 = domainEvent as IDomainEvent<MyAggregate, MyId, MyEventV1>;
 yield return myEventV1 == null
 ? domainEvent
 : _domainEventFactory.Upgrade<MyAggregate, MyId>(
 domainEvent, new MyEventV2());
 }
}

 © Copyright .
 Created using Sphinx 1.3.1.

_static/comment.png

Documentation/Customize.html

 Navigation

 		
 index

 		EventFlow stable documentation »

Customize

When ever EventFlow doesn’t meet your needs, e.g. if you want to collect
statistics on each command execution time, you can customize EventFlow.

Basically EventFlow relies on an IoC container to allow developers to customize
the different parts of EventFlow.

Note: Read the section “Changing IoC container” for details on how to change
the IoC container used if you have specific needs like e.g. integrating
EventFlow into an Owin application.

You have two options for when you want to customize EventFlow

		Decorate an implementation

		Replace an implementation

Decorating implementations

In the case of collecting statistics, you might want to wrap the existing
ICommandBus with a decorator class the can collect statistics on command
execution times.

void ConfigureEventFlow()
{
 var resolver = EventFlowOptions.new
 .RegisterServices(DecorateCommandBus)
 ...
 .CreateResolver();
}

void DecorateCommandBus(IServiceRegistration sr)
{
 sr.Decorate<ICommandBus>((r, cb) => new StatsCommandBus(sb));
}

class StatsCommandBus : ICommandBus
{
 private readonly _internalCommandBus;

 public StatsCommandBus(ICommandBus commandBus)
 {
 _internalCommandBus = commandBus;
 }

 // Here follow implementations of ICommandBus that call the
 // internal command bus and logs statistics
 ...
}

Registering new implementations

The more drastic step is to completely replace an implementation. For this
you use the Register(...) and related methods on IServiceRegistration
instead of the Decorate(...) method.

A example of a service that you might be interested in creating your own
custom implementation of is IAggregateFactory which handles all aggregate
creation, enabling you to pass additional services to a aggregate upon
creation before events are applied.

Changing IoC container

EventFlow provides the NuGet package EventFlow.Autofac that allows you
to set the internal ContainerBuilder used during EventFlow initialization.

Pass the ContainerBuilder to EventFlow and call CreateContainer() when
configuration is done to create the container.

var containerBuilder = new ContainerBuilder();

var container = EventFlowOptions.With
 .UseAutofacContainerBuilder(containerBuilder) // Must be the first line!
 ...
 .CreateContainer();

Maybe call UseAutofacAggregateRootFactory() just before the
CreateContainer() to use the Autofac aggregate root factory.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/plus.png

Documentation/Aggregates.html

 Navigation

 		
 index

 		EventFlow stable documentation »

Aggregates

Initially before you can create a aggregate, you need to create its
identity. You can create your own implementation by implementing
the IIdentity interface or you can use a base class Identity<> that
EventFlow provides, like this.

public class TestId : Identity<TestId>
{
 public TestId(string value) : base(value)
 {
 }
}

The Identity<> value object provides generic functionality to create and
validate aggregate root IDs.

		IDs follow the form {class without "Id"}-{guid} e.g.
test-c93fdb8c-5c9a-4134-bbcd-87c0644ca34f for the above TestId

		IDs can be generated using the static New property

		IDs can be validated using the static bool IsValid(string) method

		ID validation errors (if any) can be gathered using the static
IEnumerable<string> Validate(string) method

Note that its important to name the constructor argument value as
its significant if you serialize the ID.

Next, to create a new aggregate, simply inherit from AggregateRoot<,> like
this, making sure to pass test aggregate own type as the first generic
argument and the identity as the second.

public class TestAggregate : AggregateRoot<TestAggregate, TestId>
{
 public TestAggregate(TestId id)
 : base(id)
 {
 }
}

Events

In an event source system like EventFlow, aggregate root data are stored on
events.

public class PingEvent : AggregateEvent<TestAggregate, TestId>
{
 public string Data { get; }
 public PingEvent(string data)
 {
 Data = data;
 }
}

Please make sure to read the section on
value objects and events for some important notes on
creating events.

Emitting events

In order to emit an event from an aggregate, call the protected
Emit(...) method which applies the event and adds it to the list of
uncommitted events.

public void Ping(string data)
{
 // Fancy domain logic here that validates aggregate state...

 if (string.IsNullOrEmpty(data))
 {
 throw DomainError.With("Ping data empty")
 }

 Emit(new PingEvent(data))
}

Remember not to do any changes to the aggregate with the these methods, as
as state are only stored through events and how they are applied to the
aggregate root.

Applying events

Currently EventFlow has three methods of applying events to the aggregate when
emitted or loaded from the event store. Which you choose is up to you,
implementing IEmit<SomeEvent> is the most convenient, but will expose
public Apply methods.

		Create a method called Apply that takes the event as argument. To get the
method signature right, implement the IEmit<SomeEvent> on your aggregate.
This is the default fallback and you will get an exception if no other
strategies are configured. Although you can implement IEmit<SomeEvent>,
its optional, the Apply methods can be protected or private

		Create a state object by inheriting from AggregateState<,,> and registering
using the protected Register(...) in the aggregate root constructor

		Register a specific handler for a event using the protected
Register<SomeEvent>(e => Handler(e)) from within the constructor

		Register an event applier using Register(IEventApplier eventApplier),
which could be a e.g state object

 © Copyright .
 Created using Sphinx 1.3.1.

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

Documentation/FAQ.html

 Navigation

 		
 index

 		EventFlow stable documentation »

FAQ - frequently asked questions

How can I ensure that only specific users can execute commands?

You should implement a decorator for the ICommadBus that does the authentication.
Have a look at the decorator documentation
to see how this can be achieved.

Why isn’t there a “global sequence number” on domain events?

While this is easy to support in some event stores like MSSQL, it doesn’t
really make sense from a domain perspective. Greg Young also has this to say
on the subject:

Order is only assured per a handler within an aggregate root
boundary. There is no assurance of order between handlers or
between aggregates. Trying to provide those things leads to
the dark side.

Greg Young [https://groups.yahoo.com/neo/groups/domaindrivendesign/conversations/topics/18453]

Why doesn’t EventFlow have a unit of work concept?

Short answer, you shouldn’t need it. But Mike has a way better answer:

In the Domain, everything flows in one direction: forward. When something bad
happens, a correction is applied. The Domain doesn’t care about the database
and UoW is very coupled to the db. In my opinion, it’s a pattern which is
usable only with data access objects, and in probably 99% of the cases you
won’t be needing it. As with the Singleton, there are better ways but
everything depends on proper domain design.

Mike Mogosanu [http://blog.sapiensworks.com/post/2014/06/04/Unit-Of-Work-is-the-new-Singleton.aspx/]

If your case falls within the 1% case, write an decorator for the ICommandBus
that starts a transaction, use MSSQL as event store and make sure your read
models are stored in MSSQL as well.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		EventFlow stable documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.1.

Documentation/GettingStarted.html

 Navigation

 		
 index

 		EventFlow stable documentation »

Getting started

This guide describes how to get started using EventFlow.

Implementation notes

		Aggregates and events are post fixed with Aggregate and
Event, its not required by EventFlow, but it makes it a bit
easier to read the guide and distinguish the different types

		.ConfigureAwait(false) is omitted to make the code easier
to read

		Make sure to read the comments about how this code should be improved at
the bottom

Create an aggregate

Initially you need to create the object representing the identity
of a user. Will use the class provided by EventFlow to help us to get
started.

public class UserId : Identity<UserId>
{
 public UserId(string value) : base(value) { }
}

Next, let us start by creating a aggregate to represent our users.

public class UserAggregate : AggregateRoot<UserAggregate, UserId>
{
 public UserAggregate(UserId id)
 : base(id)
 {
 }
}

Create event

public class UserCreatedEvent : AggregateEvent<UserAggregate, UserId>
{
 public string Username { get; private set; }
 public string Password { get; private set; }

 public UserCreatedEvent(
 string username,
 string password)
 {
 Username = username;
 Password = password;
 }
}

Important notes regarding events

		Once have aggregates in your production environment that have
emitted a event, you should never change it. You can deprecate
it, but you should never change the data stored in the event store

Update aggregate

We update our aggregate by creating a new method called Create(...) that
takes the username and password and emits the UserCreatedEvent if there’s
no domain errors.

We also create the Apply(UserCreatedEvent e) method than applies the event
to the aggregate root.

Note that there are alternatives to applying events using Apply(...) methods,
have a look at the aggregate documentation for further
details.

public class UserAggregate : AggregateRoot<UserAggregate, UserId>,
 IEmit<UserCreatedEvent>
{
 public string Username { get; private set; }
 public string Password { get; private set; }

 public UserAggregate(UserId id)
 : base(id)
 {
 }

 public void Create(
 string username,
 string password)
 {
 if (!IsNew)
 {
 // If the aggregate isn't new, i.e., events have already
 // been fired for this aggregate, then we have a domain error
 throw DomainError.With("User already created");
 }

 // Everything is okay and thus we emit the event
 Emit(new UserCreatedEvent(username, password));
 }

 public void Apply(UserCreatedEvent e)
 {
 // We must ONLY make state changes in Apply methods as anywhere
 // else will not be persisted
 Username = e.Username;
 Password = e.Password;
 }
}

Create command

Even though it is possible, we are not allowed to call the newly
created Create method on our UserAggregate. The call must be
made from a command handler, and thus we first create the command.

public class UserCreateCommand : Command<UserAggregate, UserId>
{
 public string Username { get; private set; }
 public string Password { get; private set; }

 public UserCreateCommand(
 UserId id,
 string username,
 string password)
 : base(id)
 {
 Username = username;
 Password = password;
 }
}

Note that you can read the article regarding commands for
more details, e.g. on ensuring idempotency in a distributed application.

Create command handler

Next we create the command handler that invokes the aggregate with the command
arguments.

public class UserCreateCommand :
 ICommand<UserAggregate, UserId, UserCreateCommand>
{
 public Task ExecuteAsync(
 UserAggregate aggregate,
 UserCreateCommand command,
 CancellationToken cancellationToken)
 {
 aggregate.Create(command.Username, command.Password);
 return Task.FromResult(0);
 }
}

Create a new user

Now all there is let is to create the user somewhere in your
application by publishing the command.

var userId = UserId.New;
var username = GetUserEnteredUsername();
var password = GetUserEnteredPassword();

var command = new UserCreateCommand(
 userid,
 username,
 password);

await _commandBus.PublishAsync(command, cancellationToken);

Improvements

There are several areas the code can be improved.

		Use value objects for e.g. username and password that
validate the value, i.e., ensure that the username isn’t the empty string

 © Copyright .
 Created using Sphinx 1.3.1.

Documentation/RabbitMQ.html

 Navigation

 		
 index

 		EventFlow stable documentation »

RabbitMQ

Configuring EventFlow to publish events to RabbitMQ [http://www.rabbitmq.com/]
is simple, just install the NuGet package EventFlow.RabbitMQ and add this to
your EventFlow setup.

var uri = new Uri("amqp://localhost");

var resolver = EventFlowOptions.with
 .PublishToRabbitMq(RabbitMqConfiguration.With(uri))
 ...
 .CreateResolver();

Events are published to a exchange named eventflow with routing keys in the
following format.

eventflow.domainevent.[Aggregate name].[Event name].[Event version]

Which will be the following for an event named CreateUser version 1 for the
MyUserAggregate.

eventflow.domainevent.my-user.create-user.1

Note the lowercasing and adding of - whenever there’s a capital letter.

All the above is the default behavior, if you don’t like it replace e.g. the
service IRabbitMqMessageFactory to customize what routing key or exchange to
use. Have a look at how EventFlow [https://github.com/rasmus/EventFlow] has
done its implementation to get started.

 © Copyright .
 Created using Sphinx 1.3.1.

README.html

 Navigation

 		
 index

 		EventFlow stable documentation »

EventFlow

 		
 [image:]

 		

 [image:]

 [image:]

 [image:]

EventFlow is a basic CQRS+ES framework designed to be easy to use.

Have a look at our getting started guide,
the dos and don’ts and the
FAQ.

Features

		CQRS+ES framework

		Async/await first: Every part of EventFlow is written using async/await.

		Highly configurable and extendable

		Easy to use

		No use of threads or background workers making it “web friendly”

		Cancellation: All methods that does IO work or might delay execution (due to
retries), takes a CancellationToken argument to allow you to cancel the operation

Examples

		Simple: Shows the key concepts of EventFlow in a few
lines of code

		Shipping: To get a more complete example of how EventFlow could be used,
have a look at the shipping example found here in the code base. The example
is based on the shipping example from the book “Domain-Driven Design -
Tackling Complexity in the Heart of Software” by Eric Evans. Its
in-progress, but should provide inspiration on how to use EventFlow on a
larger scale. If you have ideas and/or comments, create a pull request or
an issue

Overview

Here is a list of the EventFlow concepts. Use the links to navigate
to the documentation.

		Aggregates: Domains object
that guarantees the consistency of changes being made within
each aggregate

		Command bus and commands:
Entry point for all command/operation execution.

		Event store: Storage of the event stream for aggregates.
Currently there is support for these storage types.

		In-memory - only for test

		Files - only for test

		Microsoft SQL Server

		EventStore - only for test (for now) home page [https://geteventstore.com/]

		Read models: Denormalized representation
of aggregate events optimized for reading fast. Currently there is support for
these read model storage types.
		Elasticsearch

		In-memory - only for test

		Microsoft SQL Server

		Queries: Value objects that represent
a query without specifying how its executed, that is let to a query handler

		Jobs: Perform scheduled tasks at a later time,
e.g. publish a command. EventFlow provides support for these job schedulers
		Hangfire - home page [http://hangfire.io/]

		Event upgrade: As events committed to
the event store is never changed, EventFlow uses the concept of event
upgraders to deprecate events and replace them with new during aggregate load.

		Event publishing: Sometimes you want other applications or services to
consume and act on domains. For this EventFlow supports event publishing.

		RabbitMQ

		Metadata:
Additional information for each aggregate event, e.g. the IP of
the user behind the event being emitted. EventFlow ships with
several providers ready to use used.

		Value objects: Data containing classes
used to validate and hold domain data, e.g. a username or e-mail.

		Customize: Almost every single part of
EventFlow can be swapped with a custom implementation through the embedded
IoC container.

Simple example

Here’s an example on how to use the in-memory event store (default)
and a in-memory read model store.

using (var resolver = EventFlowOptions.New
 .AddEvents(typeof (TestAggregate).Assembly)
 .AddCommandHandlers(typeof (TestAggregate).Assembly)
 .UseInMemoryReadStoreFor<TestAggregate, TestReadModel>()
 .CreateResolver())
{
 var commandBus = resolver.Resolve<ICommandBus>();
 var eventStore = resolver.Resolve<IEventStore>();
 var readModelStore = resolver.Resolve<IInMemoryReadModelStore<
 TestAggregate,
 TestReadModel>>();
 var id = TestId.New;

 // Publish a command
 await commandBus.PublishAsync(new PingCommand(id));

 // Load aggregate
 var testAggregate = await eventStore.LoadAggregateAsync<TestAggregate>(id);

 // Get read model from in-memory read store
 var testReadModel = await readModelStore.GetAsync(id);
}

Note: .ConfigureAwait(false) and use of CancellationToken is omitted in
the above example to ease reading.

State of EventFlow

EventFlow is still under development, especially the parts regarding
how read models are re-populated.

EventFlow is currently used in production environments and performs very well,
but it need to mature before key APIs are stable.

EventFlow is greatly opinionated, but its possible to create new implementations
for almost every part of EventFlow by registering a different implementation of a
a interface.

Useful articles related to EventFlow and DDD

Many of the technical design decisions in EventFlow is based on articles. This
section lists some of them. If you have a link with a relevant article, please
share it by creating an issue with the link.

		Domain-Driven Design

		Domain-Driven Design Reference [https://domainlanguage.com/ddd/reference/] by Eric Evans

		General CQRS+ES

		CQRS Journey by Microsoft [https://msdn.microsoft.com/en-us/library/jj554200.aspx]
published by Microsoft

		An In-Depth Look At CQRS [http://blog.sapiensworks.com/post/2015/09/01/In-Depth-CQRS/]
by Mike Mogosanu

		CQRS, Task Based UIs, Event Sourcing agh! [http://codebetter.com/gregyoung/2010/02/16/cqrs-task-based-uis-event-sourcing-agh/]
by Greg Young

		Busting some CQRS myths [https://lostechies.com/jimmybogard/2012/08/22/busting-some-cqrs-myths/]
by Jimmy Bogard

		CQRS applied [https://lostechies.com/gabrielschenker/2015/04/12/cqrs-applied/]
by Gabriel Schenker

		Eventual consistency

		How To Ensure Idempotency In An Eventual Consistent DDD/CQRS Application [http://blog.sapiensworks.com/post/2015/08/26/How-To-Ensure-Idempotency/]
by Mike Mogosanu

		Why not to implement “unit of work” in DDD

		Unit Of Work is the new Singleton [http://blog.sapiensworks.com/post/2014/06/04/Unit-Of-Work-is-the-new-Singleton.aspx/]
by Mike Mogosanu

		The Unit of Work and Transactions In Domain Driven Design [http://blog.sapiensworks.com/post/2015/09/02/DDD-and-UoW/]
by Mike Mogosanu

How to contribute

EventFlow still needs a lot of love and if you want to help out there are
several areas that you could help out with.

		Features: If you have a great idea for EventFlow, create a pull request.
It might be a finished idea or just some basic concepts showing the feature
outline

		Pull request feedback: Typically there are several pull requests marked
with the in progress and feedback is always welcome. Please note that the
quality of the code here might not be “production ready”, especially if
the pull request is marked with the prof of concept label

		Documentation: Good documentation is very important for any library and
is also very hard to do properly, so if spot a spelling error, think up
a good idea for a guide or just have some comments, then please create
either a pull request or an issue

		Information sharing: Working with CQRS+ES and DDD is hard, so if you come
across articles that might be relevant for EventFlow, or even better, can
point to specfic EventFlow functionality that might be done better, then
please create an issue or ask in the Gitter chat

		Expand the shipping example: If you have ideas on how to expand the
shipping example found in the code base, the please create a pull request
or create an issue
		Give a good understanding of how to use EventFlow

		Give a better understanding of how API changes in EventFlow affect
existing applications

		Provide a platform for DDD discussions

Thanks

		JetBrains [https://www.jetbrains.com/resharper/]: OSS licenses

		iconmonstr [http://iconmonstr.com/network-6-icon/]: Free icons for EventFlow

License

The MIT License (MIT)

Copyright (c) 2015 Rasmus Mikkelsen
Copyright (c) 2015 eBay Software Foundation
https://github.com/rasmus/EventFlow

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

Documentation/ValueObjects.html

 Navigation

 		
 index

 		EventFlow stable documentation »

Event serialization and value objects

One of the important parts the creating a event sourced application, is to
ensure that you always can read your event streams. It seems simple enough, but
it is a problem, especially for with large applications that undergo refactoring
or domain changes.

The basic idea is to store events in a structure that’s easy to access and
migrate if the need should arise. EventFlow, like many other event sourced
systems, stores its event using JSON.

Making pretty and clean JSON

You might wonder “but, why?”, and the reason is somewhat similar to the
reasoning behind semantic URLs [https://en.wikipedia.org/wiki/Semantic_URL].

Consider the following value object used to validate and contain usernames in
an application.

public class Username
{
 public string Value { get; }

 public Username(string value)
 {
 if (string.IsNullOrEmpty(value) || value.Length <= 4)
 {
 throw DomainError.With($"Invalid username '{value}'");
 }

 Value = value;
 }
}

First we do some cleanup and re-write it using EventFlows SingleValueObject<>.

public class Username : SingleValueObject<string>
{
 public Username(string value) : base(value)
 {
 if (string.IsNullOrEmpty(value) || value.Length <= 4)
 {
 throw DomainError.With($"Invalid username '{value}'");
 }
 }
}

Now it looks simple and we might think we can use this value object directly
in our domain events. We could, but the resulting JSON will look like this.

{
 "Username" : {
 "Value": "my-awsome-username",
 }
}

This doesn’t look very good. First, that extra property doesn’t make it easier
to read and it takes up more space when serializing and transmitting the event.

In addition, if you use the value object on a web API, people using the API
will need to wrap the properties in their DTOs in a similarly. What we would
like is to have our serialized event to look like this instead and still use
the value object in our events.

{
 "Username" : "my-awsome-username"
}

To do this, we use the custom JSON serializer EventFlow has for single value
objects called SingleValueObjectConverter on our Username class like this.

[JsonConverter(typeof(SingleValueObjectConverter))] // Only this line added
public class Username : SingleValueObject<string>
{
 public Username(string value) : base(value)
 {
 if (string.IsNullOrEmpty(value) || value.Length <= 4)
 {
 throw DomainError.With($"Invalid username '{value}'");
 }
 }
}

The JSON converter understands the single value object and will serialize and
deserialize it correctly.

Using this converter also enables to you replace e.g. raw string and int
properties with value objects on existing events as they will be
“JSON compatible”.

 © Copyright .
 Created using Sphinx 1.3.1.

RELEASE_NOTES.html

 Navigation

 		
 index

 		EventFlow stable documentation »

New in 0.23 (not released yet)

		Breaking: EventFlow no longer ignores columns named Id in MSSQL read models.
If you were dependent on this, use the MsSqlReadModelIgnoreColumn attribute

		Fixed: Instead of using MethodInfo.Invoke to call methods on reflected
types, e.g. when a command is published, EventFlow now compiles an expression
tree instead. This has a slight initial overhead, but provides a significant
performance improvement for subsequent calls

		Fixed: Read model stores are only invoked if there’s any read model updates

		Fixed: EventFlow now correctly throws an ArgumentException if EventFlow has
been incorrectly configure with known versioned types, e.g. an event
is emitted that hasn’t been added during EventFlow initialization. EventFlow
would handle the save operation correctly, but if EventFlow was reinitialized
and the event was loaded before it being emitted again, an exception would
be thrown as EventFlow would know which type to use. Please make sure to
correctly load all event, command and job types before use

		Fixed: IReadModelFactory<>.CreateAsync(...) is now correctly used in
read store mangers

		Fixed: Versioned type naming convention now allows numbers

New in 0.22.1393 (released 2015-11-19)

		New: To customize how a specific read model is initially created, implement
a specific IReadModelFactory<> that can bootstrap that read model

		New: How EventFlow handles MSSQL read models has been refactored to allow
significantly more freedom to developers. MSSQL read models are no longer
required to implement IMssqlReadModel, only the empty IReadModel
interface. Effectively, this means that no specific columns are required,
meaning that the following columns are no longer enforced on MSSQL read
models. Use the new required MsSqlReadModelIdentityColumn attribute to mark
the identity column and the optional (but recommended)
MsSqlReadModelVersionColumn to mark the version column.
		string AggregateId

		DateTimeOffset CreateTime

		DateTimeOffset UpdatedTime

		int LastAggregateSequenceNumber

		Obsolete: IMssqlReadModel and MssqlReadModel. Developers should instead
use the MsSqlReadModelIdentityColumn and MsSqlReadModelVersionColumn
attributes to mark the identity and version columns (read above).
EventFlow will continue to support IMssqlReadModel, but it will be
removed at some point in the future

		Fixed: Added missing UseElasticsearchReadModel<TReadModel, TReadModelLocator>()
extension

New in 0.21.1312 (released 2015-10-26)

		New: Added Identity<>.NewComb() that creates sequential unique IDs which can
be used to minimize database fragmentation

		New: Added IReadModelContext.Resolver to allow read models to fetch
additional resources when events are applied

		New: The PrettyPrint() type extension method, mostly used for verbose
logging, now prints even prettier type names, e.g.
KeyValuePair<Boolean,Int64> instead of merely KeyValuePair'2, making log
messages slightly more readable

New in 0.20.1274 (released 2015-10-22)

		Breaking: Entity<T> now inherits from ValueObject but uses only the Id
field as equality component. Override GetEqualityComponents() if you have
a different notion of equality for a specific entity

		Breaking: Entity<T> will now throw an ArgumentNullException if the id
passed to its constructor is null

		Breaking: Fixed method spelling. Renamed
ISpecification<T>.WhyIsNotStatisfiedBy to WhyIsNotSatisfiedBy and
Specification<T>.IsNotStatisfiedBecause to IsNotSatisfiedBecause

		New: Read model support for Elasticsearch via the new NuGet package
EventFlow.ReadStores.Elasticsearch

New in 0.19.1225 (released 2015-10-19)

		Breaking: AddDefaults now also adds the job type definition to the
IJobsDefinitonService

		New: Implemented a basic specification pattern by providing
ISpecification<T>, an easy-to-use Specificaion<T> and a set of extension
methods. Look at the EventFlow specification tests to get started

		Fixed: IEventDefinitionService, ICommandDefinitonService and
IJobsDefinitonService now longer throw an exception if an existing
event is loaded, i.e., multiple calls to AddEvents(...), AddCommand(...)
and AddJobs(...) no longer throws an exception

		Fixed: DomainError.With(...) no longer executes string.format if only
one argument is parsed

New in 0.18.1181 (released 2015-10-07)

		POTENTIAL DATA LOSS for the files event store: The EventFlow
internal functionality regarding event stores has been refactored resulting
in information regarding aggregate names being removed from the event
persistence layer. The files based event store no longer stores its events in
the path [STORE PATH]\[AGGREGATE NAME]\[AGGREGATE ID]\[SEQUENCE].json, but
in the path [STORE PATH]\[AGGREGATE ID]\[SEQUENCE].json. Thus if you are
using the files event store for tests, you should move the events into the
new file structure. Alternatively, implement the new IFilesEventLocator and
provide your own custom event file layout.

		Breaking: Event stores have been split into two parts, the IEventStore
and the new IEventPersistence. IEventStore has the same interface before
but the implementation is now no longer responsible for persisting the events,
only converting and serializing the persisted events. IEventPersistence
handles the actual storing of events and thus if any custom event stores have
been implemented, they should implement to the new IEventPersistence
instead.

		New: Added IEntity, IEntity<> and an optional Entity<> that developers
can use to implement DDD entities.

New in 0.17.1134 (released 2015-09-28)

		Fixed: Using NuGet package EventFlow.Autofac causes an exception with the
message The type 'EventFlow.Configuration.Registrations.AutofacStartable' is not assignable to service 'Autofac.IStartable during EventFlow setup

New in 0.16.1120 (released 2015-09-27)

		Breaking: Removed HasRegistrationFor<> and GetRegisteredServices()
from IServiceRegistration and added them to IResolver instead. The
methods required that all service registrations went through EventFlow,
which in most cases they will not

		Obsolete: Marked IServiceRegistration.RegisterIfNotRegistered(...), use
the keepDefault = true on the other Register(...) methods instead

		New: Major changes have been done to how EventFlow handles service
registration and bootstrapping in order for developers to skip calling
CreateResolver() (or CreateContainer() if using the EventFlow.Autofac
package) completely. EventFlow will register its bootstrap services in the
IoC container and configure itself whenever the container is created

		New: Introduced IBootstrap interface that you can register. It has a
single BootAsync(...) method that will be called as soon as the IoC
container is ready (similar to that of IStartable of Autofac)

		Fixed: Correct order of service registration decorators. They are now
applied in the same order they are applied, e.g., the last registered
service decorator will be the “outer” service

		Fixed: Added missing ICommand<,> interface to abstract Command<,> class in
EventFlow.Commands.

New in 0.15.1057 (released 2015-09-24)

		Fixed: Added UseHangfireJobScheduler() and marked UseHandfireJobScheduler()
obsolete, fixing method spelling mistake

New in 0.14.1051 (released 2015-09-23)

		Breaking: All EventFlowOptions extensions are now IEventFlowOptions
instead and EventFlowOptions implements this interface. If you have made
your own extensions, you will need to use the newly created interface
instead. Changed in order to make testing of extensions and classes
dependent on the EventFlow options easier to test

		New: You can now bundle your configuration of EventFlow into modules that
implement IModule and register these by calling
EventFlowOptions.RegisterModule(...)

		New: EventFlow now supports scheduled job execution via e.g. Hangfire. You
can create your own scheduler or install the new EventFlow.Hangfire NuGet
package. Read the jobs documentation for more details

		New: Created the OWIN CommandPublishMiddleware middleware that can
handle publishing of commands by posting a JSON serialized command to
e.g. /commands/ping/1 in which ping is the command name and 1 its
version. Remember to add authentication

		New: Created a new interface ICommand<TAggregate,TIdentity,TSourceIdentity>
to allow developers to control the type of ICommand.SourceId. Using the
ICommand<TAggregate,TIdentity> (or Command<TAggregate,TIdentity>)
will still yield the same result as before, i.e., ICommand.SourceId being
of type ISourceId

		New: The AddDefaults(...) now also adds the command type definition to the
new ICommandDefinitonService

New in 0.13.962 (released 2015-09-13)

		Breaking: EventFlowOptions.AddDefaults(...) now also adds query handlers

		New: Added an optional Predicate<Type> to the following option extension
methods that scan an Assembly: AddAggregateRoots(...),
AddCommandHandlers(...), AddDefaults(...), AddEventUpgraders(...),
AddEvents(...), AddMetadataProviders(...), AddQueryHandlers(...) and
AddSubscribers(...)

		Fixed: EventFlowOptions.AddAggregateRoots(...) now prevents abstract
classes from being registered when passing IEnumerable<Type>

		Fixed: Events published to RabbitMQ are now in the right order for chains
of subscribers, if event A -> subscriber -> command -> aggregate -> event B,
then the order of published events to RabbitMQ was event B and then
event A

New in 0.12.891 (released 2015-09-04)

		Breaking: Aggregate root no longer have Aggregate removed from their
when name, i.e., the metadata property with key aggregate_name (or
MetadataKeys.AggregateName). If you are dependent on the previous naming,
use the new AggregateName attribute and apply it to your aggregates

		Breaking: Moved Identity<> and IIdentity from the EventFlow.Aggregates
namespace to EventFlow.Core as the identities are not specific for aggregates

		Breaking: ICommand.Id is renamed to ICommand.AggregateId to make “room”
for the new ICommand.SourceId property. If commands are serialized, then
it might be important verify that the serialization still works. EventFlow
does not serialize commands, so no mitigation is provided. If the
Command<,> is used, make sure to use the correct protected constructor

		Breaking: IEventStore.StoreAsync(...) now requires an additional
ISourceId argument. To create a random one, use SourceId.New, but it
should be e.g. the command ID that resulted in the events. Note, this method
isn’t typically used by developers

		New: Added ICommand.SourceId, which contains the ID of the source. The
default (if your commands inherit from Command<,>) will be a new
CommandId each time the a Command<,> instance is created. You can pass
specific value, merely use the newly added constructor taking the ID.
Alternatively you commands could inherit from the new
DistinctCommand, enabling commands with the same state to have the
same SourceId

		New: Duplicate commands can be detected using the new ISourceId. Read the
EventFlow article regarding commands for more details

		New: Aggregate names can now be configured using the attribute
AggregateName. The name can be accessed using the new IAggregateRoot.Name
property

		New: Added Identity<>.NewDeterministic(Guid, string) enabling creation of
deterministic GUIDs [http://code.logos.com/blog/2011/04/generating_a_deterministic_guid.html]

		New: Added new metadata key source_id (MetadataKeys.SourceId) containing
the source ID, typically the ID of the command from which the event
originated

		New: Added new metadata key event_id (MetadataKeys.EventId) containing a
deterministic ID for the event. Events with the same aggregate sequence
number and from aggregates with the same identity, will have the same event
identity

		Fixed: Identity<>.With(string) now throws an ArgumentException instead of
a TargetInvocationException when passed an invalid identity

		Fixed: Aggregate roots now build the cache of Apply methods once, instead
of when the method is requested the first time

New in 0.11.751 (released 2015-08-24)

		Breaking: EventFlowOptions.AddDefaults(...) now also adds event
definitions

		New: RabbitMQ [http://www.rabbitmq.com/] is now supported through the new
NuGet package called EventFlow.RabbitMQ which enables domain events to be
published to the bus

		New: If you want to subscribe to all domain events, you can implement
and register a service that implements ISubscribeSynchronousToAll. Services
that implement this will automatically be added using the
AddSubscribers(...) or AddDefaults(...) extension to EventFlowOptions

		New: Use EventFlowOptions.UseAutofacAggregateRootFactory(...) to use an
Autofac aggregate root factory, enabling you to use services in your
aggregate root constructor

		New: Use EventFlowOptions.UseResolverAggregateRootFactory() to use the
resolver to create aggregate roots. Same as
UseAutofacAggregateRootFactory(...) but for when using the internal IoC
container

		New: Use EventFlowOptions.AddAggregateRoots(...) to register aggregate root
types

		New: Use IServiceRegistration.RegisterType(...) to register services by
type

New in 0.10.642 (released 2015-08-17)

		Breaking: Updated NuGet reference Newtonsoft.Json to v7.0.1
(up from v6.0.8)

		Breaking: Remove the empty constructor from SingleValueObject<>

		New: Added SingleValueObjectConverter to help create clean JSON when
e.g. domain events are serialized

		New: Added a protected method Register(IEventApplier) to
AggregateRoot<,> that enables developers to override how events are
applied. Use this to e.g. implement state objects

		New: Create AggregateState<,,> that developers can use to create aggregate
state objects. Call Register(...) with the state object as argument
to redirect events to it

		New: Allow AggregateRoot<,>.Apply(...), i.e., methods for applying events,
to be private and protected

		New: Made AggregateRoot<,>.Emit(...) protected and virtual to allow
overrides that e.g. add a standard set of metadata from the aggregate state.

		New: Made AggregateRoot<,>.ApplyEvent(...) protected and virtual to
allow more custom implementations of applying events to the aggregate root.

		Fixed: Updated internal NuGet reference Dapper to v1.42 (up from v1.38)

New in 0.9.580 (released 2015-07-20)

		Braking: IEventStore.LoadAllEventsAsync and IEventStore.LoadAllEvents
now take a GlobalPosition as an argument instead of a long for the
starting position. The GlobalPosition is basically a wrapper around a
string that hides the inner workings of each event store.

		New: NuGet package EventFlow.EventStores.EventStore that provides
integration to Event Store [https://geteventstore.com/]. Its an initial
version and shouldn’t be used in production.

New in 0.8.560 (released 2015-05-29)

		Breaking: Remove all functionality related to global sequence
numbers as it proved problematic to maintain. It also matches this
quote:

Order is only assured per a handler within an aggregate root
boundary. There is no assurance of order between handlers or
between aggregates. Trying to provide those things leads to
the dark side.

Greg Young

		If you use a MSSQL read store, be sure to delete the
LastGlobalSequenceNumber column during update, or set it to
default NULL

		IDomainEvent.GlobalSequenceNumber removed

		IEventStore.LoadEventsAsync and IEventStore.LoadEvents taking
a GlobalSequenceNumberRange removed

		Breaking: Remove the concept of event caches. If you really need this
then implement it by registering a decorator for IEventStore

		Breaking: Moved IDomainEvent.BatchId to metadata and created
MetadataKeys.BatchId to help access it

		New: IEventStore.DeleteAggregateAsync to delete an entire aggregate
stream. Please consider carefully if you really want to use it. Storage
might be cheaper than the historic knowledge within your events

		New: IReadModelPopulator is new and enables you to both purge and
populate read models by going though the entire event store. Currently
its only basic functionality, but more will be added

		New: IEventStore now has LoadAllEventsAsync and LoadAllEvents that
enables you to load all events in the event store a few at a time.

		New: IMetadata.TimestampEpoch contains the Unix timestamp version
of IMetadata.Timestamp. Also, an additional metadata key
timestamp_epoch is added to events containing the same data. Note,
the TimestampEpoch on IMetadata handles cases in which the
timestamp_epoch is not present by using the existing timestamp

		Fixed: AggregateRoot<> now reads the aggregate version from
domain events applied during aggregate load. This resolves an issue
for when an IEventUpgrader removed events from the event stream

		Fixed: InMemoryReadModelStore<,> is now thread safe

New in 0.7.481 (released 2015-05-22)

		New: EventFlow now includes a IQueryProcessor that enables you to implement
queries and query handlers in a structure manner. EventFlow ships with two
ready-to-use queries and related handlers
		ReadModelByIdQuery<TReadModel>: Supported by in-memory and MSSQL read
model stores

		InMemoryQuery<TReadModel>: Only supported by in-memory read model store,
but lets you search for any read model based on a Predicate<TReadModel>

New in 0.6.456 (released 2015-05-18)

		Breaking: Read models have been significantly improved as they can now
subscribe to events from multiple aggregates. Use a custom
IReadModelLocator to define how read models are located. The supplied
ILocateByAggregateId simply uses the aggregate ID. To subscribe
to other events, simply implement IAmReadModelFor<,,> and make sure
you have supplied a proper read model locator.
		UseMssqlReadModel signature changed, change to
.UseMssqlReadModel<MyReadModel, ILocateByAggregateId>() in
order to have the previous functionality

		UseInMemoryReadStoreFor signature changed, change to
.UseInMemoryReadStoreFor<MyReadModel, ILocateByAggregateId>() in
order to have the previous functionality

		Breaking: A warning is no longer logged if you forgot to subscribe to
a aggregate event in your read model as read models are no longer
strongly coupled to a specific aggregate and its events

		Breaking: ITransientFaultHandler now takes the strategy as a generic
argument instead of the Use<> method. If you want to configure the
retry strategy, use ConfigureRetryStrategy(...) instead

		New: You can now have multiple IReadStoreManager if you would like to
implement your own read model handling

		New: IEventStore now has a LoadEventsAsync and LoadEvents
that loads IDomainEvents based on global sequence number range

		New: Its now possible to register generic services without them being
constructed generic types, i.e., register typeof(IMyService<>) as
typeof(MyService<>)

		New: Table names for MSSQL read models can be assigned using the
TableAttribute from System.ComponentModel.DataAnnotations

		Fixed: Subscribers are invoked after read stores have been updated,
which ensures that subscribers can use any read models that were
updated

New in 0.5.390 (released 2015-05-08)

		POTENTIAL DATA LOSS for files event store: Files event store now
stores its log as JSON instead of an int in the form
{"GlobalSequenceNumber":2}. So rename the current file and put in the
global sequence number before startup

		Breaking: Major changes has been made regarding how the aggregate
identity is implemented and referenced through interfaces. These changes makes
it possible to access the identity type directly though all interface. Some
notable examples are listed here. Note that this has NO impact on how data
is stored!
		IAggregateRoot changed to IAggregateRoot<TIdentity>

		ICommand<TAggregate> changed to ICommand<TAggregate,TIdentity>

		ICommandHandler<TAggregate,TCommand> changed to
ICommandHandler<TAggregate,TIdentity, TCommand>

		IAmReadModelFor<TEvent> changed to
IAmReadModelFor<TAggregate,TIdentity,TEvent>

		IDomainEvent<TEvent> changed to IDomainEvent<TAggregate,TIdentity>

		New: ICommandBus.Publish now takes a CancellationToken argument

		Fixed: MSSQL should list columns to SELECT when fetching events

New in 0.4.353 (released 2015-05-05)

		Breaking: ValueObject now uses public properties instead of both
private and public fields

		Breaking: Aggregate IDs are no longer string but objects implementing
IIdentity

		Breaking: MSSQL transient exceptions are now retried

		Breaking: All methods on IMsSqlConnection has an extra Label argument

		New: ITransientFaultHandler added along with default retry strategies
for optimistic concurrency and MSSQL transient exceptions

		New: Release notes added to NuGet packages

		New: Better logging and more descriptive exceptions

		Fixed: Unchecked missing in ValueObject when claculating hash

		Fixed: NullReferenceException thrown if null was stored
in SingleValueObject and ToString() was called

New in 0.3.292 (released 2015-04-30)

		First stable version of EventFlow

 © Copyright .
 Created using Sphinx 1.3.1.

Documentation/Commands.html

 Navigation

 		
 index

 		EventFlow stable documentation »

Commands

Commands are the basic value objects, or models, that represent write operations
that you can perform in your domain.

As an example, one might implement create this command for updating user
passwords.

public class UserUpdatePasswordCommand : Command<UserAggregate, UserId>
{
 public Password NewPassword { get; private set; }
 public Password OldPassword { get; private set; }

 public UserUpdatePasswordCommand(
 UserId id,
 Password newPassword,
 Password oldPassword)
 : base(id)
 {
 Username = username;
 Password = password;
 }
}

Note that the Password class is merely a value object created to hold the
password and do basic validation. Read the article regarding
value objects for more information. Also, you don’t
have to use the default EventFlow Command<,> implementation, you can create
your own, it merely have to implement the ICommand<,> interface.

A command by itself doesn’t do anything and will throw an exception if
published. To make a command work, you need to implement one (and only one)
command handler which is responsible for invoking the aggregate.

public class UserUpdatePasswordCommandHandler :
 CommandHandler<UserAggregate, UserId, UserUpdatePasswordCommand>
{
 public override Task ExecuteAsync(
 UserAggregate aggregate,
 UserUpdatePasswordCommand command,
 CancellationToken cancellationToken)
 {
 aggregate.UpdatePassword(
 command.OldPassword,
 command.NewPassword);
 return Task.FromResult(0);
 }
}

Ensure idempotency

Detecting duplicate operations can be hard, especially if you have a
distributed application, or simply a web application. Consider the following
simplified scenario.

		The user wants to change his password

		The user fills in the “change password form”

		As user is impatient, or by accident, the user submits the for twice

		The first web request completes and the password is changed. However, as
the browser is waiting on the first web request, this result is ignored

		The second web request throws a domain error as the “old password” doesn’t
match as the current password has already been changed

		The user is presented with a error on the web page

Handling this is simple, merely ensure that the aggregate is idempotent
is regards to password changes. But instead of implementing this yourself,
EventFlow has support for it and its simple to utilize and is done per
command.

To use the functionality, merely ensure that commands that represent the
same operation has the same ISourceId which implements IIdentity like
the example blow.

public class UserUpdatePasswordCommand : Command<UserAggregate, UserId>
{
 public Password NewPassword { get; private set; }
 public Password OldPassword { get; private set; }

 public UserCreateCommand(
 UserId id,
 ISourceId sourceId,
 Password newPassword,
 Password oldPassword)
 : base(id, sourceId)
 {
 Username = username;
 Password = password;
 }
}

Note the use of the other protected constructor of Command<,> that
takes a ISourceId in addition to the aggregate root identity.

If a duplicate command is detected, a DuplicateOperationException is thrown.
The application could then ignore the exception or report the problem to the
end user.

The default ISourceId history size of the aggregate root, is ten. But it can
be configured using the SetSourceIdHistory(...) that must be called from
within the aggregate root constructor.

Easier ISourceId calculation

Ensuring the correct calculation of the command ISourceId can be somewhat
cumbersome, which is why EventFlow provides another base command you can use,
the DistinctCommand<,>. By using the DistinctCommand<,> you merely have
to implement the GetSourceIdComponents() and providing the
IEnumerable<byte[]> that makes the command unique. The bytes is used to
create a deterministic GUID to be used as an ISourceId.

public class UserUpdatePasswordCommand :
 DistinctCommand<UserAggregate, UserId>
{
 public Password NewPassword { get; private set; }
 public Password OldPassword { get; private set; }

 public UserUpdatePasswordCommand(
 UserId id,
 Password newPassword,
 Password oldPassword)
 : base(id)
 {
 Username = username;
 Password = password;
 }

 protected override IEnumerable<byte[]> GetSourceIdComponents()
 {
 yield return NewPassword.GetBytes();
 yield return OldPassword.GetBytes();
 }
}

The GetBytes() merely returns the Encoding.UTF8.GetBytes(...) of the
password.

Its important that you don’t use the GetHashCode(), as the implementation
is different for e.g. string on 32 bit and 64 bit .NET.

 © Copyright .
 Created using Sphinx 1.3.1.

Documentation/ReadStores.html

 Navigation

 		
 index

 		EventFlow stable documentation »

Read model stores

In order to create query handlers that perform and enable them search across
multiple fields, read models or projections are used.

Read models are a flattened views of a subset or all aggregate domain events
created specifically for efficient queries.

Here’s a simple example of how a read model for doing searches for usernames
could look. The read model handles the UserCreated domain event event to get
the username and user ID.

public class UserReadModel : IReadModel,
 IAmReadModelFor<UserAggregate, UserId, UserCreated>
{
 public string UserId { get; set; }
 public string Username { get; set; }

 public void Apply(
 IReadModelContext context,
 IDomainEvent<UserAggregate, UserId, UserCreated> domainEvent)
 {
 UserId = domainEvent.AggregateIdentity.Value;
 Username = domainEvent.AggregateEvent.Username.Value;
 }
}

Read model locators

Typically the ID of read models are the aggregate identity, but sometimes this
isn’t the case. Here are some examples.

		Items from a collection on the aggregate root

		Deterministic ID created from event data

		Entity within the aggregate

To create read models in these cases, use the EventFlow concept of read model
locators, which is basically a mapping from a domain event to a read model ID.

As an example, consider if we could add several nicknames to a user. We might
have a domain event called UserNicknameAdded similar to this.

public class UserNicknameAdded : AggregateEvent<UserAggregate, UserId>
{
 public Nickname Nickname { get; set; }
}

We could then create a read model locator that would return the ID for each
nickname we add via the event like this.

public class UserNicknameReadModelLocator : IReadModelLocator
{
 public IEnumerable<string> GetReadModelIds(IDomainEvent domainEvent)
 {
 var userNicknameAdded = domainEvent as
 IDomainEvent<UserAggregate, UserId, UserNicknameAdded>;
 if (userNicknameAdded == null)
 {
 yield break;
 }

 yield return userNicknameAdded.Nickname.Id;
 }
}

And then use a read model similar to this that represent each nickname.

public class UserNicknameReadModel : IReadModel,
 IAmReadModelFor<UserAggregate, UserId, UserNicknameAdded>
{
 public string UserId { get; set; }
 public string Nickname { get; set; }

 public void Apply(
 IReadModelContext context,
 IDomainEvent<UserAggregate, UserId, UserCreated> domainEvent)
 {
 UserId = domainEvent.AggregateIdentity.Value;
 Nickname = domainEvent.AggregateEvent.Nickname.Value;
 }
}

We could then use this nickname read model to query all the nicknames for a
given user by search for read models that have a specific UserId.

Read store implementations

EventFlow has built-in support for several different read model stores.

In-memory

The in-memory read store is easy to use and easy to configure. All read models
are stored in-memory, so if EventFlow is restarted all read models are lost.

To configure the in-memory read model store, simply call
UseInMemoryReadStoreFor<> or UseInMemoryReadStoreFor<,> with your read
model as the generic argument.

var resolver = EventFlowOptions.New
 ...
 .UseInMemoryReadStoreFor<UserReadModel>()
 .UseInMemoryReadStoreFor<UserNicknameReadModel,UserNicknameReadModelLocator>()
 ...
 .CreateResolver();

Microsoft SQL Server

To configure the MSSQL read model store, simply call
UseMssqlReadModel<> or UseMssqlReadModel<,> with your read
model as the generic argument.

var resolver = EventFlowOptions.New
 ...
 .UseMssqlReadModel<UserReadModel>()
 .UseMssqlReadModel<UserNicknameReadModel,UserNicknameReadModelLocator>()
 ...
 .CreateResolver();

By convention, EventFlow uses the table named ReadModel-[CLASS NAME] as the
table to store the read models rows in. If you need to change this, use the
Table from the System.ComponentModel.DataAnnotations.Schema namespace. So
in the above example, the read model UserReadModel would be stored in
a table called ReadModel-UserReadModel unless stated otherwise.

To allow EventFlow to find the read models stored, a single column is required
to have the MsSqlReadModelIdentityColumn attribute. This will be used to
store the read model ID.

You should also create a int column that has the MsSqlReadModelVersionColumn
attribute to tell EventFlow which column is used to store the read model version
in.

Elasticsearch

To configure the Elasticsearch [https://www.elastic.co/products/elasticsearch]
read model store, simply call UseElasticsearchReadModel<> or
UseElasticsearchReadModel<,> with your read model as the generic argument.

var resolver = EventFlowOptions.New
 ...
 .ConfigureElasticsearch(new Uri("http://localhost:9200/"))
 ...
 .UseElasticsearchReadModel<UserReadModel>()
 .UseElasticsearchReadModel<UserNicknameReadModel,UserNicknameReadModelLocator>()
 ...
 .CreateResolver();

Overloads of ConfigureElasticsearch(...) is available for alternative
Elasticsearch configurations.

Make sure to create any mapping the read model requires in Elasticsearch
before using the read model in EventFlow.

If you want to control the index a specific read model is stored in, create
create an implementation of IReadModelDescriptionProvider and register it
in the EventFlow IoC.

 © Copyright .
 Created using Sphinx 1.3.1.

Documentation/Queries.html

 Navigation

 		
 index

 		EventFlow stable documentation »

Queries

Creating queries in EventFlow is simple.

First create a value object that contains the data required for the query. In
this example we want to search for users based on their username.

public class GetUserByUsernameQuery : IQuery<User>
{
 public string Username { get; private set; }

 public GetUserByUsernameQuery(string username)
 {
 Username = username;
 }
}

Next create a query handler that implements how the query is processed.

public class GetUserByUsernameQueryHandler :
 IQueryHandler<GetUserByUsernameQuery, User>
{
 private IUserReadModelRepository _userReadModelRepository;

 public GetUserByUsernameQueryHandler(
 IUserReadModelRepository userReadModelRepository)
 {
 _userReadModelRepository = userReadModelRepository;
 }

 Task<User> ExecuteQueryAsync(
 GetUserByUsernameQuery query,
 CancellationToken cancellationToken)
 {
 return _userReadModelRepository.GetByUsernameAsync(
 query.Username,
 cancellationToken)
 }
}

Last step is to register the query handler in EventFlow. Here we show the
simple, but cumbersome version, you should use one of the overloads that
scans an entire assembly.

...
EventFlowOptions.New
 .AddQueryHandler<GetUserByUsernameQueryHandler, GetUserByUsernameQuery, User>()
...

Then in order to use the query in your application, you need a reference to
the IQueryProcessor, which in our case is stored in the _queryProcessor
field.

...
var user = await _queryProcessor.ProcessAsync(
 new GetUserByUsernameQuery("root")
 cancellationToken)
 .ConfigureAwait(false);
...

Queries shipped with EventFlow

		ReadModelByIdQuery<TReadModel>: Supported by both the in-memory and MSSQL
read model stores automatically as soon as you define the read model use
using the EventFlow options for that store

		InMemoryQuery<TReadModel>: Takes a Predicate<TReadModel> and returns
IEnumerable<TReadModel>, making it possible to search all your in-memory
read models based on any predicate

 © Copyright .
 Created using Sphinx 1.3.1.

Documentation/EventStores-MSSQL.html

 Navigation

 		
 index

 		EventFlow stable documentation »

MSSQL event store

To use the MSSQL event store provider you need to install the NuGet
package EventFlow.EventStores.MsSql.

Configuration

Configure the MSSQL connection and event store as shown here.

IRootResolver rootResolver = EventFlowOptions.New
 .ConfigureMsSql(MsSqlConfiguration.New
 .SetConnectionString(@"Server=.\SQLEXPRESS;Database=MyApp;User Id=sa;Password=???"))
 .UseMssqlEventStore()
 ...
 .CreateResolver();

Create and migrate required MSSQL databases

Before you can use the MSSQL event store, the required database
and tables must be created. The database specified in your MSSQL
connection will not be automatically created, you have to do this
yourself.

To make EventFlow create the required tabeles, execute the following code.

var msSqlDatabaseMigrator = rootResolver.Resolve<IMsSqlDatabaseMigrator>();
EventFlowEventStoresMsSql.MigrateDatabase(msSqlDatabaseMigrator);

You should do this either on application start or preferably upon application
install or update, e.g., when the web site is installed.

Note: If you utilize user permission in your application, then you
need to grant the event writer access to the user defined table type
eventdatamodel_list_type. EventFlow uses this type to pass entire
batches of events to the database.

 © Copyright .
 Created using Sphinx 1.3.1.

Documentation/Metadata.html

 Navigation

 		
 index

 		EventFlow stable documentation »

Metadata

Metadata is all the “additional” information that resides with a
emitted event, some of which is required information.

In EventFlow metadata is merely a IEnumerable of
KeyValuePair<string,string> for which each is a metadata entry.

Out of the box these metadata keys are added to each aggregate event.

		event_name and event_version - A name and version for the event
which is used during event deserialization.

		timestamp - A DateTimeOffset for when the event was emitted
from the aggregate.

		aggregate_sequence_number - The version the aggregate was after
the event was emitted, e.g. 1 for the very first event emitted.

Custom metadata provider

If you require additional information to be stored along with each
event, then you can implement the IMetadataProvider interface and
register the class using e.g. .AddMetadataProvider(...) on
EventFlowOptions.

Additional built-in providers

EventFlow ships with a collection of ready-to-use providers in
some of its NuGet packages.

EventFlow

		AddEventTypeMetadataProvider

		event_type_assembly_name - Assembly name of the assembly
containing the event

		event_type_assembly_version - Assembly version of the assembly
containing the event

		event_type_fullname - Full name of the event corresponding to
Type.FullName for the aggregate event type.

		AddGuidMetadataProvider

		guid - A new Guid for each event.

		AddMachineNameMetadataProvider

		environment_machinename - Adds the machine name handling the
event from Environment.MachineName

EventFlow.Owin

		AddRequestHeadersMetadataProvider

		request_header[HEADER] - Adds all headers from the OWIN request
as metadata, each as a separate entry for which HEADER in the
is replace with the name of the header. E.g. the
request_header[Connection] might contain the value Keep-Alive.

		AddUriMetadataProvider

		request_uri - OWIN request URI.

		request_method - OWIN request method.

		AddUserHostAddressMetadataProvider

		user_host_address - The provider tries to find the correct user
host address by inspecting request headers, i.e., if you have
a load balancer in front of your application, then the request IP
is not the real user address, but the load balancer should send
the user IP as a header.

		user_host_address_source_header - The header for of which the
user host address was taken.

		remote_ip_address - The remote IP address. Note that this might
be the IP address of your load balancer.

 © Copyright .
 Created using Sphinx 1.3.1.

Documentation/Jobs.html

 Navigation

 		
 index

 		EventFlow stable documentation »

Jobs

A job is basically a task that you either don’t want to execute in the current
context, on the current server or execute at a later time. EventFlow provides
basic functionality for jobs.

There are areas where you might find jobs very useful, here are some examples

		Publish a command at a specific time in the future

		Transient error handling

var jobScheduler = resolver.Resolve<IJobScheduler>();
var job = PublishCommandJob.Create(new SendEmailCommand(id), resolver);
await jobScheduler.ScheduleAsync(
 job,
 TimeSpan.FromDays(7),
 CancellationToken.None)
 .ConfigureAwait(false);

In the above example the SendEmailCommand command will be published in seven
days.

Be careful when using jobs

When working with jobs, you should be aware of the following

		The default implementation does executes the job now, i.e., in the
current context. To get another behavior, install e.g. EventFlow.Hangfire
to get support for scheduled jobs. Read below for details on how to
configure Hangfire

		Your jobs should serialize to JSON properly, see the section on
value objects for more information

		If you use the provided PublishCommandJob, make sure that your commands
serialize properly as well

Create your own jobs

To create your own jobs, your job merely needs to implement the IJob
interface and be registered in EventFlow.

Here’s an example of a job implementing IJob

[JobVersion("LogMessage", 1)]
public class LogMessageJob : IJob
{
 public LogMessageJob(string message)
 {
 Message = message;
 }

 public string Message { get; }

 public Task ExecuteAsync(
 IResolver resolver,
 CancellationToken cancellationToken)
 {
 var log = resolver.Resolve<ILog>();
 log.Debug(Message);
 }
}

Note that the JobVersion attribute specifies the job name and version to
EventFlow and this is how EventFlow distinguishes between the different job
types. This makes it possible for you to reorder your code, even rename the
job type, as long as you keep the same attribute values its considered the
same job in EventFlow. If the attribute is omitted, the name will be the
type name and version will be 1.

Here’s how the job is registered in EventFlow.

var resolver = EventFlowOptions.new
 .AddJobs(typeof(LogMessageJob))
 ...
 .CreateResolver();

Then to schedule the job

var jobScheduler = resolver.Resolve<IJobScheduler>();
var job = new LogMessageJob("Great log message");
await jobScheduler.ScheduleAsync(
 job,
 TimeSpan.FromDays(7),
 CancellationToken.None)
 .ConfigureAwait(false);

Hangfire

To use Hangfire [http://hangfire.io/] as the job scheduler, install the NuGet
package EventFlow.Hangfire and configure EventFlow to use the scheduler
like this.

var resolver = EventFlowOptions.new
 .UseHangfireJobScheduler() // This line
 ...
 .CreateResolver();

Note that the UseHangfireJobScheduler() doesn’t do any Hangfire configuration,
but merely registers the proper scheduler in EventFlow.

 © Copyright .
 Created using Sphinx 1.3.1.

Documentation/Configuration.html

 Navigation

 		
 index

 		EventFlow stable documentation »

Configure EventFlow

To get EventFlow up and running, you need an instance of IEventFlowOptions
which is created using the EventFlowOptions.New static property. From here
you use extension methods and extension methods to setup EventFlow to your
needs.

Basic example

Here’s the very minimum that you will need to get EventFlow up and running
with a in-memory configuration.

using (var resolver = EventFlowOptions.New
 .AddDefaults(typeof(YouApplication).Assembly)
 .CreateResolver())
{
 // Do stuff

 // Don't dispose the 'resolver' until application shutdown!
}

First the default types and services are registered from your application using
the AddDefaults(...) method.

Versioned types, types that might exist in multiple versions as the application
evolves, are loaded into EventFlow.

		Event types are loaded into the IEventDefinitionService

		Command types are loaded into the ICommandDefinitionService

		Job types are loaded into the IJobDefinitionService

Services with known interfaces are registered in the built-in IoC container.

		Command handlers, i.e., ICommandHandler<,,> implementations

		Meta data providers, i.e., IMetadataProvider implementations

		Subscribers, i.e., ISubscribeSynchronousTo<,,> and ISubscribeSynchronousToAll implementations

		Event upgraders, i.e., IEventUpgrader<,> implementations

		Query handlers, i.e., IQueryHandler<,> implementations

Note that you can use another IoC container, e.g. Autofac using the
EventFlow.Autofac NuGet package. If using this package, you can even skip
the CreateResolver() call, as EventFlow will automatically configure itself
when the container is ready.

The final step of configuring EventFlow, is to call CreateResolver() which
configures the IoC container and its through this that you can access e.g.
the ICommandBus which allows you to publish commands.

Configuration methods

Note that almost every single one of the configuration methods on
IEventFlowOptions is implemented as extension methods and you will need
to add the appropriate namespace, e.g. EventFlow.Extensions.

Versioned types

		AddEvents

		AddCommands

		AddJobs

Services

General

		RegisterServices, configure other services or override existing

		UseServiceRegistration, use an alternative IoC container

		UseAutofacContainerBuilder in NuGet package EventFlow.Autofac

		RegisterModule, register modules

Aggregates

		UseResolverAggregateRootFactory

		UseAutofacAggregateRootFactory in the NuGet package EventFlow.Autofac

		AddAggregateRoots, add aggregates if using the
UseResolverAggregateRootFactory or UseAutofacAggregateRootFactory
Command handlers

		AddCommandHandlers

Subscribers

		AddSubscribers

Event upgraders

		AddEventUpgraders

Metadata providers

		AddMetadataProviders

Event stores

		UseEventStore

		UseFilesEventStore

		UseEventStoreEventStore in NuGet package EventFlow.EventStores.EventStore

		UseMssqlEventStore in NuGet package EventFlow.EventStores.MsSql

Read models and stores

		UseReadStoreFor<TReadStore, TReadModel>

		UseReadStoreFor<TReadStore, TReadModel, TReadModelLocator>>

		UseInMemoryReadStoreFor<TReadModel>

		UseInMemoryReadStoreFor<TReadModel, TReadModelLocator>

Jobs and schedulers

		UseHangfireJobScheduler in the NuGet package EventFlow.Hangfire

Queries and handlers

		AddQueryHandlers

 © Copyright .
 Created using Sphinx 1.3.1.

